130 research outputs found

    Research assessment: A contribution to solving the publication credit allocation problem

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems

    Addressing the tacit knowledge of a digital library system

    Get PDF
    Recent surveys, about the Linked Data initiatives in library organizations, report the experimental nature of related projects and the difficulty in re-using data to provide improvements of library services. This paper presents an approach for managing data and its "tacit" organizational knowledge, as the originating data context, improving the interpretation of data meaning. By analyzing a Digital Libray system, we prototyped a method for turning data management into a "semantic data management", where local system knowledge is managed as a data, and natively foreseen as a Linked Data. Semantic data management aims to curates the correct consumers' understanding of Linked Datasets, driving to a proper re-use

    The size of BDDs and other data structures in temporal logics model checking

    Get PDF
    Temporal Logic Model Checking is a verification method in which we describe a system, the model, and then we verify whether important properties, expressed in a temporal logic formula, hold in the system. Many Model Checking tools employ BDDs or some other data structure to represent sets of states. It has been empirically observed that the BDDs used in these algorithms may grow exponentially as the model and formula increase in size. We formally prove that no kind of data structure of polynomial size can represent the set of valid initial states for all models and all formulae. This result holds for all data structures where a state can be checked in polynomial time. Therefore, it holds not only for all types of BDDs regardless of variable ordering, but also for more powerful data structures, such as RBCs, MTBDDs, ADDs and SDDs. Thus, the size explosion of BDDs is not a limit of these specific data representation structures, but is unavoidable: every formalism used in the same way would lead to an exponential size blow up

    Accuracy of Author Names in Bibliographic Data Sources: An Italian Case Study

    Get PDF
    We investigate the accuracy of how author names are reported in bibliographic records excerpted from four prominent sources: WoS, Scopus, PubMed, and CrossRef. We take as a case study 44,549 publications stored in the internal database of Sapienza University of Rome, one of the largest universities in Europe. While our results indicate generally good accuracy for all bibliographic data sources considered, we highlight a number of issues that undermine the accuracy for certain classes of author names, including compound names and names with diacritics, which are common features to Italian and other Western languages

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    The adaptive control system of quadrocopter motion

    Get PDF
    In this paper we present a system for automatic control of a quadrocopter based on the adaptive control system. The task is to ensure the motion of the quadrocopter along the given route and to control the stabilization of the quadrocopter in the air in a horizontal or in a given angular position by sending control signals to the engines. The nonlinear model of a quadrocopter is expressed in the form of a linear non-stationary system

    Computing the Shapley value in allocation problems: approximations and bounds, with an application to the Italian VQR research assessment program

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. We describe useful properties that allow us to greatly simplify the instances of allocation problems, without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been implemented and tested on a real-world application of allocation problems, namely, the Italian research assessment program known as VQR (Verifica della QualitĂ  della Ricerca, or Research Quality Assessment)1. For the large university considered in the experiments, the problem involves thousands of agents and goods (here, researchers and their research products). The algorithms described in the paper are able to compute the Shapley value for most of those agents, and to get a good approximation of the Shapley value for all of the

    Computing the shapley value in allocation problems: Approximations and bounds, with an application to the Italian VQR research assessment program

    Get PDF
    In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximized, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. In this paper, we first review the application of the Shapley value to an allocation problem that models the evaluation of the Italian research structures with a procedure known as VQR. For large universities, the problem involves thousands of agents and goods (here, researchers and their research products). We then describe some useful properties that allow us to greatly simplify many such large instances. Moreover, we propose new algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been tested on large real-world instances of the VQR research evaluation problem

    On the Shapley value and its application to the Italian VQR research assessment exercise

    Get PDF
    Research assessment exercises have now become common evaluation tools in a number of countries. These exercises have the goal of guiding merit-based public funds allocation, stimulating improvement of research productivity through competition and assessing the impact of adopted research support policies. One case in point is Italy's most recent research assessment effort, VQR 2011–2014 (Research Quality Evaluation), which, in addition to research institutions, also evaluated university departments, and individuals in some cases (i.e., recently hired research staff and members of PhD committees). However, the way an institution's score was divided, according to VQR rules, between its constituent departments or its staff members does not enjoy many desirable properties well known from coalitional game theory (e.g., budget balance, fairness, marginality). We propose, instead, an alternative score division rule that is based on the notion of Shapley value, a well known solution concept in coalitional game theory, which enjoys the desirable properties mentioned above. For a significant test case (namely, Sapienza University of Rome, the largest university in Italy), we present a detailed comparison of the scores obtained, for substructures and individuals, by applying the official VQR rules, with those resulting from Shapley value computations. We show that there are significant differences in the resulting scores, making room for improvements in the allocation rules used in research assessment exercises

    Compilability of Abduction

    Full text link
    Abduction is one of the most important forms of reasoning; it has been successfully applied to several practical problems such as diagnosis. In this paper we investigate whether the computational complexity of abduction can be reduced by an appropriate use of preprocessing. This is motivated by the fact that part of the data of the problem (namely, the set of all possible assumptions and the theory relating assumptions and manifestations) are often known before the rest of the problem. In this paper, we show some complexity results about abduction when compilation is allowed
    • …
    corecore